Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Front Immunol ; 12: 743890, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1581344

RESUMEN

Background: Both anti-viral and anti-inflammatory bronchial effects are warranted to treat viral infections in asthma. We sought to investigate if imiquimod, a TLR7 agonist, exhibits such dual actions in ex vivo cultured human bronchial epithelial cells (HBECs), targets for SARS-CoV-2 infectivity. Objective: To investigate bronchial epithelial effects of imiquimod of potential importance for anti-viral treatment in asthmatic patients. Methods: Effects of imiquimod alone were examined in HBECs from healthy (N=4) and asthmatic (N=18) donors. Mimicking SARS-CoV-2 infection, HBECs were stimulated with poly(I:C), a dsRNA analogue, or SARS-CoV-2 spike-protein 1 (SP1; receptor binding) with and without imiquimod treatment. Expression of SARS-CoV-2 receptor (ACE2), pro-inflammatory and anti-viral cytokines were analyzed by RT-qPCR, multiplex ELISA, western blot, and Nanostring and proteomic analyses. Results: Imiquimod reduced ACE2 expression at baseline and after poly(I:C) stimulation. Imiquimod also reduced poly(I:C)-induced pro-inflammatory cytokines including IL-1ß, IL-6, IL-8, and IL-33. Furthermore, imiquimod increased IFN-ß expression, an effect potentiated in presence of poly(I:C) or SP1. Multiplex mRNA analysis verified enrichment in type-I IFN signaling concomitant with suppression of cytokine signaling pathways induced by imiquimod in presence of poly(I:C). Exploratory proteomic analyses revealed potentially protective effects of imiquimod on infections. Conclusion: Imiquimod triggers viral resistance mechanisms in HBECs by decreasing ACE2 and increasing IFN-ß expression. Additionally, imiquimod improves viral infection tolerance by reducing viral stimulus-induced epithelial cytokines involved in severe COVID-19 infection. Our imiquimod data highlight feasibility of producing pluripotent drugs potentially suited for anti-viral treatment in asthmatic subjects.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Asma , COVID-19 , Imiquimod/farmacología , Interferón beta/efectos de los fármacos , Mucosa Respiratoria/efectos de los fármacos , Adyuvantes Inmunológicos/farmacología , Adulto , Anciano , Bronquios/efectos de los fármacos , Bronquios/inmunología , Bronquios/virología , Células Cultivadas , Femenino , Humanos , Interferón beta/inmunología , Masculino , Persona de Mediana Edad , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología , SARS-CoV-2
2.
ERJ Open Res ; 7(3)2021 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-1365314

RESUMEN

BACKGROUND: There are emerging data of long-term effects of coronavirus disease 2019 (COVID-19) comprising a diversity of symptoms. The aim of this study was to systematically describe and measure pulmonary and extra-pulmonary post-COVID-19 complications in relation to acute COVID-19 severity. METHODS: Patients attending a standard of care 3 months post-hospitalisation follow-up visit and those referred by their general practitioner because of persistent post-COVID-19 symptoms were included. Patients underwent symptomatic, quality of life, pulmonary (lung function and high-resolution computed tomography (HRCT)), cardiac (high-resolution ECG), physical (1-min sit and stand test (1-MSTST), handgrip strength, cardiopulmonary exercise testing (CPET)) and cognitive evaluations. RESULTS: All 34 hospitalised and 22 out of 23 non-hospitalised patients had ≥1 complaint or abnormal finding at follow-up. Overall, 67% of patients were symptomatic (Medical Research Council (MRC) ≥2 or COPD assessment test (CAT) ≥10), with no difference between hospitalised versus non-hospitalised patients. Pulmonary function (forced expiratory volume in 1 s (FEV1) or diffusing capacity of the lung for carbon monoxide (D LCO)) <80% of predicted) was impaired in 68% of patients. D LCO was significantly lower in those hospitalised compared to non-hospitalised (70.1±18.0 versus 80.2±11.2% predicted, p=0.02). Overall, 53% had an abnormal HRCT (predominantly ground-glass opacities) with higher composite computed tomography (CT) scores in hospitalised versus non-hospitalised patients (2.3 (0.1-4.8) and 0.0 (0.0-0.3), p<0.001). 1-MSTST was below the 25th percentile in almost half of patients, but no signs of cardiac dysfunction were found. Cognitive impairments were present in 59-66% of hospitalised and 31-44% of non-hospitalised patients (p=0.08). CONCLUSION: Three months after COVID-19 infection, patients were still symptomatic and demonstrated objective respiratory, functional, radiological and cognitive abnormalities, which were more prominent in hospitalised patients. Our study underlines the importance of multidimensional management strategies in these patients.

3.
ERJ Open Res ; 7(2)2021 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-1264123

RESUMEN

Real-world evidence is important to help unravel unanswered problems in severe asthma and is valuable to better understand the patient experience and common clinical practice. The Severe Heterogeneous Asthma Registry, Patient-centred (SHARP) Clinical Research Collaboration is created as a network of national registries and severe asthma centres that work together to perform registry based real-world research and clinical studies on a pan-European scale. Such collaboration requires a new, innovative design to overcome the many issues that arise with large-scale data collection across national borders. SHARP has developed a platform that offers a federated analysis approach where national registry data are transformed and integrated into a common data model (CDM). The CDM then allows a local analysis of de-identified patient data and subsequent aggregate (meta-)analysis. To facilitate an easily accessible way to set up new registries, SHARP enables new registries to take part in a central database, based on already proven technology. Next to being economical, this linkage ensures data from different SHARP central members to be comparable. Technological advancements lead to an ever-expanding rate of patient data that will be collected; with the collective effort of the pan-European severe asthma research community SHARP hopes to ensure that they are well equipped to enter a new era of medical research, with the ultimate goal to positively impact the lives of patients with severe asthma.

4.
Trials ; 21(1): 513, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: covidwho-592125

RESUMEN

OBJECTIVES: The aim of this randomised GCP-controlled trial is to clarify whether combination therapy with the antibiotic azithromycin and hydroxychloroquine via anti-inflammation/immune modulation, antiviral efficacy and pre-emptive treatment of supra-infections can shorten hospitalisation duration for patients with COVID-19 (measured as "days alive and out of hospital" as the primary outcome), reduce the risk of non- invasive ventilation, treatment in the intensive care unit and death. TRIAL DESIGN: This is a multi-centre, randomised, Placebo-controlled, 2-arm ratio 1:1, parallel group double-blind study. PARTICIPANTS: 226 participants are recruited at the trial sites/hospitals, where the study will take place in Denmark: Aalborg, Bispebjerg, Gentofte, Herlev, Hillerød, Hvidovre, Odense and Slagelse hospitals. INCLUSION CRITERIA: • Patient admitted to Danish emergency departments, respiratory medicine departments or internal medicine departments • Age≥ 18 years • Hospitalized ≤48 hours • Positive COVID-19 test / diagnosis during the hospitalization (confirmed). • Men or non-fertile women. Fertile women* must not be pregnant, i.e. negative pregnancy test must be available at inclusion • Informed consent signed by the patient *Defined as after menarche and until postmenopausal (no menstruation for 12 months) Exclusion criteria: • At the time of recruitment, the patient uses >5 LO2/min (equivalent to 40% FiO2 if measured) • Known intolerance/allergy to azithromycin or hydroxychloroquine or hypersensitivity to quinine or 4-aminoquinoline derivatives • Neurogenic hearing loss • Psoriasis • Retinopathy • Maculopathy • Visual field changes • Breastfeeding • Severe liver diseases other than amoebiasis (INR> 1.5 spontaneously) • Severe gastrointestinal, neurological and hematological disorders (investigator-assessed) • eGFR <45 ml/min/1.73 m2 • Clinically significant cardiac conduction disorders/arrhythmias or prolonged QTc interval (QTc (f) of> 480/470 ms). • Myasthenia gravis • Treatment with digoxin* • Glucose-6-phosphate dehydrogenase deficiency • Porphyria • Hypoglycaemia (Blood glucose at any time since hospitalization of <3.0 mmol/L) • Severe mental illness which significantly impedes cooperation • Severe linguistic problems that significantly hinder cooperation • Treatment with ergot alkaloids *The patient must not be treated with digoxin for the duration of the intervention. For atrial fibrillation/flutter, select according to the Cardiovascular National Treatment Guide (NBV): Calcium antagonist, Beta blocker, direct current (DC) conversion or amiodarone. In case of urgent need for digoxin treatment (contraindication for the aforementioned equal alternatives), the test drug should be paused, and ECG should be taken daily. INTERVENTION AND COMPARATOR: Control group: The control group will receive the standard treatment + placebo for both types of intervention medication at all times. If part or all the intervention therapy being investigated becomes standard treatment during the study, this may also be offered to the control group. Intervention group: The patients in the intervention group will also receive standard care. Immediately after randomisation to the intervention group, the patient will begin treatment with: Azithromycin: Day 1-3: 500 mg x 1 Day 4-15: 250 mg x 1 If the patient is unable to take the medication orally by themselves, the medication will, if possible, be administered by either stomach-feeding tube, or alternatively, temporary be changed to clarithromycin 500 mg x 2 (this only in agreement with either study coordinator Pradeesh Sivapalan or principal investigator Jens-Ulrik Stæhr Jensen). This will also be done in the control group if necessary. The patient will switch back to azithromycin when possible. Hydroxychloroquine: Furthermore, the patient will be treated with hydroxychloroquine as follows: Day 1-15: 200 mg x 2 MAIN OUTCOMES: • Number of days alive and discharged from hospital within 14 days (summarises both whether the patient is alive and discharged from hospital) ("Days alive and out of hospital") RANDOMISATION: The sponsor (Chronic Obstructive Pulmonary Disease Trial Network, COP:TRIN) generates a randomisation sequence. Randomisation will be in blocks of unknown size and the final allocation will be via an encrypted website (REDCap). There will be stratification for age (>70 years vs. <=70 years), site of recruitment and whether the patient has any of the following chronic lung diseases: COPD, asthma, bronchiectasis, interstitial lung disease (Yes vs. No). BLINDING (MASKING): Participants and study personnel will both be blinded, i.e. neither will know which group the participant is allocated to. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): This study requires 226 patients randomised 1:1 with 113 in each group. TRIAL STATUS: Protocol version 1.8, from April 16, 2020. Recruitment is ongoing (first patient recruited April 6, 2020; final patient expected to be recruited October 31, 2020). TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04322396 (registered March 26, 2020) FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).


Asunto(s)
Antivirales/administración & dosificación , Azitromicina/administración & dosificación , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Hidroxicloroquina/administración & dosificación , Pacientes Internos , Admisión del Paciente , Neumonía Viral/tratamiento farmacológico , Antivirales/efectos adversos , Azitromicina/efectos adversos , Betacoronavirus/patogenicidad , COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/mortalidad , Infecciones por Coronavirus/virología , Cuidados Críticos , Dinamarca , Método Doble Ciego , Esquema de Medicación , Mortalidad Hospitalaria , Interacciones Huésped-Patógeno , Humanos , Hidroxicloroquina/efectos adversos , Tiempo de Internación , Estudios Multicéntricos como Asunto , Ventilación no Invasiva , Pandemias , Neumonía Viral/diagnóstico , Neumonía Viral/mortalidad , Neumonía Viral/virología , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Factores de Tiempo , Resultado del Tratamiento , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA